Cargando…
Molecular and cellular identification of the immune response in peripheral ganglia following nerve injury
BACKGROUND: Neuroinflammation accompanies neural trauma and most neurological diseases. Axotomy in the peripheral nervous system (PNS) leads to dramatic changes in the injured neuron: the cell body expresses a distinct set of genes known as regeneration-associated genes, the distal axonal segment de...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019520/ https://www.ncbi.nlm.nih.gov/pubmed/29945607 http://dx.doi.org/10.1186/s12974-018-1222-5 |
Sumario: | BACKGROUND: Neuroinflammation accompanies neural trauma and most neurological diseases. Axotomy in the peripheral nervous system (PNS) leads to dramatic changes in the injured neuron: the cell body expresses a distinct set of genes known as regeneration-associated genes, the distal axonal segment degenerates and its debris is cleared, and the axons in the proximal segment form growth cones and extend neurites. These processes are orchestrated in part by immune and other non-neuronal cells. Macrophages in ganglia play an integral role in supporting regeneration. Here, we explore further the molecular and cellular components of the injury-induced immune response within peripheral ganglia. METHODS: Adult male wild-type (WT) and Ccr2(−/−) mice were subjected to a unilateral transection of the sciatic nerve and axotomy of the superior cervical ganglion (SCG). Antibody arrays were used to determine the expression of chemokines and cytokines in the dorsal root ganglion (DRG) and SCG. Flow cytometry and immunohistochemistry were utilized to identify the cellular composition of the injury-induced immune response within ganglia. RESULTS: Chemokine expression in the ganglia differed 48 h after nerve injury with a large increase in macrophage inflammatory protein-1γ in the SCG but not in the DRG, while C-C class chemokine ligand 2 was highly expressed in both ganglia. Differences between WT and Ccr2(−/−) mice were also observed with increased C-C class chemokine ligand 6/C10 expression in the WT DRG compared to C-C class chemokine receptor 2 (CCR2)(−/−) DRG and increased CXCL5 expression in CCR2(−/−) SCG compared to WT. Diminished macrophage accumulation in the DRG and SCG of Ccr2(−/−) mice was found compared to WT ganglia 7 days after nerve injury. Interestingly, neutrophils were found in the SCG but not in the DRG. Cytokine expression, measured 7 days after injury, differed between ganglion type and genotype. Macrophage activation was assayed by colabeling ganglia with the anti-inflammatory marker CD206 and the macrophage marker CD68, and an almost complete colocalization of the two markers was found in both ganglia. CONCLUSIONS: This study demonstrates both molecular and cellular differences in the nerve injury-induced immune response between DRG and SCG and between WT and Ccr2(−/−) mice. |
---|