Cargando…

Income inequalities in multimorbidity prevalence in Ontario, Canada: a decomposition analysis of linked survey and health administrative data

BACKGROUND: The burden of multimorbidity is a growing clinical and health system problem that is known to be associated with socioeconomic status, yet our understanding of the underlying determinants of inequalities in multimorbidity and longitudinal trends in measured disparities remains limited. M...

Descripción completa

Detalles Bibliográficos
Autores principales: Mondor, Luke, Cohen, Deborah, Khan, Anum Irfan, Wodchis, Walter P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019796/
https://www.ncbi.nlm.nih.gov/pubmed/29941034
http://dx.doi.org/10.1186/s12939-018-0800-6
Descripción
Sumario:BACKGROUND: The burden of multimorbidity is a growing clinical and health system problem that is known to be associated with socioeconomic status, yet our understanding of the underlying determinants of inequalities in multimorbidity and longitudinal trends in measured disparities remains limited. METHODS: We included all adult respondents from four cycles of the Canadian Community Health Survey (CCHS) (between 2005 to 2011/12), linked at the individual-level to health administrative data in Ontario, Canada (pooled n = 113,627). Multimorbidity was defined at each survey response as having ≥2 (of 17) high impact chronic conditions, based on claims data. Using a decomposition method of the Erreygers-corrected concentration index (C(Erreygers)), we measured household income inequality and the contribution of the key determinants of multimorbidity (including socio-demographic, socio-economic, lifestyle and health system factors) to these disparities. Differences over time are described. We tested for statistically significant changes to measured inequality using the slope index (SII) and relative index of inequality (RII) with a 2-way interaction on pooled data. RESULTS: Multimorbidity prevalence in 2011/12 was 33.5% and the C(Erreygers) was − 0.085 (CI: -0.108 to − 0.062), indicating a greater prevalence among lower income groups. In decomposition analyses, income itself accounted more than two-thirds (69%) of this inequality. Age (21.7%), marital status (15.2%) and physical inactivity (10.9%) followed, and the contribution of these factors increased from baseline (2005 CCHS survey) with the exception of age. Other lifestyle factors, including heavy smoking and obesity, had minimal contribution to measured inequality (1.8 and 0.4% respectively). Tests for trends (SII/RII) across pooled survey data were not statistically significant (p = 0.443 and 0.405, respectively), indicating no change in inequalities in multimorbidity prevalence over the study period. CONCLUSIONS: A pro-rich income gap in multimorbidity has persisted in Ontario from 2005 to 2011/12. These empirical findings suggest that to advance equality in multimorbidity prevalence, policymakers should target chronic disease prevention and control strategies focused on older adults, non-married persons and those that are physically inactive, in addition to addressing income disparities directly. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12939-018-0800-6) contains supplementary material, which is available to authorized users.