Cargando…

The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study

Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can...

Descripción completa

Detalles Bibliográficos
Autores principales: West, Sarah L., Rajapakse, Chamith S., Rayner, Tammy, Miller, Rhiannon, Slinger, Michelle A., Wells, Greg D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020268/
https://www.ncbi.nlm.nih.gov/pubmed/29955637
http://dx.doi.org/10.1016/j.bonr.2018.04.006
_version_ 1783335258155909120
author West, Sarah L.
Rajapakse, Chamith S.
Rayner, Tammy
Miller, Rhiannon
Slinger, Michelle A.
Wells, Greg D.
author_facet West, Sarah L.
Rajapakse, Chamith S.
Rayner, Tammy
Miller, Rhiannon
Slinger, Michelle A.
Wells, Greg D.
author_sort West, Sarah L.
collection PubMed
description Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can measure bone microarchitecture. However, published MRI bone assessment protocols use specialized MRI coils and sequences and therefore have limited transferability across institutions. We developed a protocol on a Siemens 3 Tesla MRI machine, using a commercially available coil (Siemens 15 CH knee coil), and manufacturer supplied sequences to acquire images at the tibia. We tested the reproducibility of the FSE and the GE Axial sequences and hypothesized that both would generate reproducible trabecular bone parameters. Eight healthy adults (age 25.5 ± 5.4 years) completed three measurements of each MRI sequence at the tibia. Each of the images was processed for 8 different bone parameters (such as volumetric bone volume fraction). We computed the coefficient of variation (CV) and intraclass correlation coefficients (ICC) to assess reproducibility and reliability. Both sequences resulted in trabecular parameters that were reproducible (CV <5% for most) and reliable (ICC >80% for all). Our study is one of the first to report that a commercially available MRI protocol can result in reproducible data, and is significant as MRI may be an accessible method to measure bone microarchitecture in clinical or research environments. This technique requires further testing, including validation and evaluation in other populations.
format Online
Article
Text
id pubmed-6020268
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-60202682018-06-28 The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study West, Sarah L. Rajapakse, Chamith S. Rayner, Tammy Miller, Rhiannon Slinger, Michelle A. Wells, Greg D. Bone Rep Article Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can measure bone microarchitecture. However, published MRI bone assessment protocols use specialized MRI coils and sequences and therefore have limited transferability across institutions. We developed a protocol on a Siemens 3 Tesla MRI machine, using a commercially available coil (Siemens 15 CH knee coil), and manufacturer supplied sequences to acquire images at the tibia. We tested the reproducibility of the FSE and the GE Axial sequences and hypothesized that both would generate reproducible trabecular bone parameters. Eight healthy adults (age 25.5 ± 5.4 years) completed three measurements of each MRI sequence at the tibia. Each of the images was processed for 8 different bone parameters (such as volumetric bone volume fraction). We computed the coefficient of variation (CV) and intraclass correlation coefficients (ICC) to assess reproducibility and reliability. Both sequences resulted in trabecular parameters that were reproducible (CV <5% for most) and reliable (ICC >80% for all). Our study is one of the first to report that a commercially available MRI protocol can result in reproducible data, and is significant as MRI may be an accessible method to measure bone microarchitecture in clinical or research environments. This technique requires further testing, including validation and evaluation in other populations. Elsevier 2018-04-26 /pmc/articles/PMC6020268/ /pubmed/29955637 http://dx.doi.org/10.1016/j.bonr.2018.04.006 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
West, Sarah L.
Rajapakse, Chamith S.
Rayner, Tammy
Miller, Rhiannon
Slinger, Michelle A.
Wells, Greg D.
The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title_full The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title_fullStr The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title_full_unstemmed The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title_short The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study
title_sort reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: a pilot study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020268/
https://www.ncbi.nlm.nih.gov/pubmed/29955637
http://dx.doi.org/10.1016/j.bonr.2018.04.006
work_keys_str_mv AT westsarahl thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT rajapaksechamiths thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT raynertammy thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT millerrhiannon thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT slingermichellea thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT wellsgregd thereproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT westsarahl reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT rajapaksechamiths reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT raynertammy reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT millerrhiannon reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT slingermichellea reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy
AT wellsgregd reproducibilityofmeasuringtrabecularboneparametersusingacommerciallyavailablehighresolutionmagneticresonanceimagingapproachapilotstudy