Cargando…
Shigella-Induced Emergency Granulopoiesis Protects Zebrafish Larvae from Secondary Infection
Emergency granulopoiesis is a hematopoietic program of stem cell-driven neutrophil production used to counteract immune cell exhaustion following infection. Shigella flexneri is a Gram-negative enteroinvasive pathogen controlled by neutrophils. In this study, we use a Shigella-zebrafish (Danio rerio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020294/ https://www.ncbi.nlm.nih.gov/pubmed/29946048 http://dx.doi.org/10.1128/mBio.00933-18 |
Sumario: | Emergency granulopoiesis is a hematopoietic program of stem cell-driven neutrophil production used to counteract immune cell exhaustion following infection. Shigella flexneri is a Gram-negative enteroinvasive pathogen controlled by neutrophils. In this study, we use a Shigella-zebrafish (Danio rerio) infection model to investigate emergency granulopoiesis in vivo. We show that stem cell-driven neutrophil production occurs in response to Shigella infection and requires macrophage-independent signaling by granulocyte colony-stimulating factor (Gcsf). To test whether emergency granulopoiesis can function beyond homoeostasis to enhance innate immunity, we developed a reinfection assay using zebrafish larvae that have not yet developed an adaptive immune system. Strikingly, larvae primed with a sublethal dose of Shigella are protected against a secondary lethal dose of Shigella in a type III secretion system (T3SS)-dependent manner. Collectively, these results highlight a new role for emergency granulopoiesis in boosting host defense and demonstrate that zebrafish larvae can be a valuable in vivo model to investigate innate immune memory. |
---|