Cargando…
Quantitative evaluation of binary digital region asymmetry with application to skin lesion detection
BACKGROUND: The performance of Computer Aided Diagnosis Systems for early melanoma detection relies mainly on quantitative evaluation of the geometric features corresponding to skin lesions. In these systems, diagnosis is carried out by analyzing four geometric characteristics: asymmetry (A), border...
Autores principales: | Sancen-Plaza, Agustin, Santiago-Montero, Raul, Sossa, Humberto, Perez-Pinal, Francisco J., Martinez-Nolasco, Juan J., Padilla-Medina, Jose A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020345/ https://www.ncbi.nlm.nih.gov/pubmed/29945614 http://dx.doi.org/10.1186/s12911-018-0641-7 |
Ejemplares similares
-
Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases
por: Thomsen, Kenneth, et al.
Publicado: (2020) -
Novel Mathematical Model of Breast Cancer Diagnostics Using an Associative Pattern Classification
por: Santiago-Montero, Raúl, et al.
Publicado: (2020) -
Digital circuits for binary arithmetic
por: Oberman, Roelof Maarten Marie
Publicado: (1979) -
Kinect v2-Assisted Semi-Automated Method to Assess Upper Limb Motor Performance in Children
por: Francisco-Martínez, Celia, et al.
Publicado: (2022) -
Skin lesion classification using multi-resolution empirical mode decomposition and local binary pattern
por: Samsudin, Siti Salbiah, et al.
Publicado: (2022)