Cargando…
DeepCRISPR: optimized CRISPR guide RNA design by deep learning
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehen...
Autores principales: | Chuai, Guohui, Ma, Hanhui, Yan, Jifang, Chen, Ming, Hong, Nanfang, Xue, Dongyu, Zhou, Chi, Zhu, Chenyu, Chen, Ke, Duan, Bin, Gu, Feng, Qu, Sheng, Huang, Deshuang, Wei, Jia, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020378/ https://www.ncbi.nlm.nih.gov/pubmed/29945655 http://dx.doi.org/10.1186/s13059-018-1459-4 |
Ejemplares similares
-
Benchmarking and integrating genome-wide CRISPR off-target detection and prediction
por: Yan, Jifang, et al.
Publicado: (2020) -
Deciphering relationship between microhomology and in-frame mutation occurrence in human CRISPR-based gene knockout
por: Chuai, Guohui, et al.
Publicado: (2016) -
A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
por: Li, Gaoyang, et al.
Publicado: (2022) -
CRISPR‐TAPE: protein‐centric CRISPR guide design for targeted proteome engineering
por: Anderson, Daniel Paolo, et al.
Publicado: (2020) -
CRISPR/Cas9 recombineering‐mediated deep mutational scanning of essential genes in Escherichia coli
por: Choudhury, Alaksh, et al.
Publicado: (2020)