Cargando…
Urinary Biochemistry in the Diagnosis of Acute Kidney Injury
Acute kidney injury (AKI) is a common complication, impacting short- and long-term patient outcomes. Although the application of the classification systems for AKI has improved diagnosis, early clinical recognition of AKI is still challenging, as increments in serum creatinine may be late and low ur...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020498/ https://www.ncbi.nlm.nih.gov/pubmed/30008975 http://dx.doi.org/10.1155/2018/4907024 |
Sumario: | Acute kidney injury (AKI) is a common complication, impacting short- and long-term patient outcomes. Although the application of the classification systems for AKI has improved diagnosis, early clinical recognition of AKI is still challenging, as increments in serum creatinine may be late and low urine output is not always present. The role of urinary biochemistry has remained unclear, especially in critically ill patients. Differentiating between a transient and persistent acute kidney injury is of great need in clinical practice, and despite studies questioning their application in clinical practice, biochemistry indices continue to be used while we wait for a novel early injury biomarker. An ideal marker would provide more detailed information about the type, intensity, and location of the injury. In this review, we will discuss factors affecting the fractional excretion of sodium (FeNa) and fractional excretion of urea (FeU). We believe that the frequent assessment of urinary biochemistry and microscopy can be useful in evaluating the likelihood of AKI reversibility. The availability of early injury biomarkers could help guide clinical interventions. |
---|