Cargando…
Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction
Cerebral microinfarcts have significant effects on the development of geriatric neurological disorders, including vascular dementia and Alzheimer's disease. However, little is known about the pathophysiological mechanisms involved in the evolution of microinfarcts and potential treatment and pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021265/ https://www.ncbi.nlm.nih.gov/pubmed/29880270 http://dx.doi.org/10.1016/j.ebiom.2018.05.028 |
_version_ | 1783335436137005056 |
---|---|
author | Luo, Chuanming Ren, Huixia Yao, Xiaoli Shi, Zhe Liang, Fengyin Kang, Jing X. Wan, Jian-bo Pei, Zhong Su, Kuan-Pin Su, Huanxing |
author_facet | Luo, Chuanming Ren, Huixia Yao, Xiaoli Shi, Zhe Liang, Fengyin Kang, Jing X. Wan, Jian-bo Pei, Zhong Su, Kuan-Pin Su, Huanxing |
author_sort | Luo, Chuanming |
collection | PubMed |
description | Cerebral microinfarcts have significant effects on the development of geriatric neurological disorders, including vascular dementia and Alzheimer's disease. However, little is known about the pathophysiological mechanisms involved in the evolution of microinfarcts and potential treatment and prevention against these microvascular ischemic lesions. In the present study, the “single cortical microinfarct model” generated via occluding a penetrating arteriole by femtosecond laser ablation and the “multiple diffuse microinfarcts model” induced by unilateral injection of cholesterol crystals through the internal carotid artery were established to investigate the pathophysiological mechanisms underlying the evolution of microinfarcts and the effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on alleviating microinfarct burdens and functional deficits. The occlusion of a single penetrating arteriole led to a distinct cortical microinfarct, which manifested as neuronal loss and occupation of activated glial cells in the ischemic core. Using Fat-1 transgenic mice and fish oil supplements, we demonstrated that both endogenously-generated and exogenously-delivered ω-3 PUFAs significantly inhibited the activation of receptor-interacting serine/threonine protein kinases 1 (RIPK1) and its downstream apoptosis-associated proteins, mitigated cell apoptosis, and anatomically reduced the microinfarct size. The protective effects of ω-3 PUFAs against microinfarcts were further verified in a multiple diffuse microinfarcts model, where ω-3 PUFAs significantly attenuated cell apoptosis as revealed by TUNEL staining, alleviated the diffuse microinfarct burdens and remarkably improved the functional deficits as evidenced by reduced spontaneous anxiety, increased preference for the novel object, and improved hippocampal-based learning and short-term memory. Together, these findings demonstrate that enriched brain ω-3 PUFAs are effective for reducing microinfarct burdens and improving the function deficits, which support the clinical research and application of ω-3 PUFAs in the treatment or prophylaxis in vascular dementia. |
format | Online Article Text |
id | pubmed-6021265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-60212652018-06-28 Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction Luo, Chuanming Ren, Huixia Yao, Xiaoli Shi, Zhe Liang, Fengyin Kang, Jing X. Wan, Jian-bo Pei, Zhong Su, Kuan-Pin Su, Huanxing EBioMedicine Research Paper Cerebral microinfarcts have significant effects on the development of geriatric neurological disorders, including vascular dementia and Alzheimer's disease. However, little is known about the pathophysiological mechanisms involved in the evolution of microinfarcts and potential treatment and prevention against these microvascular ischemic lesions. In the present study, the “single cortical microinfarct model” generated via occluding a penetrating arteriole by femtosecond laser ablation and the “multiple diffuse microinfarcts model” induced by unilateral injection of cholesterol crystals through the internal carotid artery were established to investigate the pathophysiological mechanisms underlying the evolution of microinfarcts and the effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on alleviating microinfarct burdens and functional deficits. The occlusion of a single penetrating arteriole led to a distinct cortical microinfarct, which manifested as neuronal loss and occupation of activated glial cells in the ischemic core. Using Fat-1 transgenic mice and fish oil supplements, we demonstrated that both endogenously-generated and exogenously-delivered ω-3 PUFAs significantly inhibited the activation of receptor-interacting serine/threonine protein kinases 1 (RIPK1) and its downstream apoptosis-associated proteins, mitigated cell apoptosis, and anatomically reduced the microinfarct size. The protective effects of ω-3 PUFAs against microinfarcts were further verified in a multiple diffuse microinfarcts model, where ω-3 PUFAs significantly attenuated cell apoptosis as revealed by TUNEL staining, alleviated the diffuse microinfarct burdens and remarkably improved the functional deficits as evidenced by reduced spontaneous anxiety, increased preference for the novel object, and improved hippocampal-based learning and short-term memory. Together, these findings demonstrate that enriched brain ω-3 PUFAs are effective for reducing microinfarct burdens and improving the function deficits, which support the clinical research and application of ω-3 PUFAs in the treatment or prophylaxis in vascular dementia. Elsevier 2018-06-05 /pmc/articles/PMC6021265/ /pubmed/29880270 http://dx.doi.org/10.1016/j.ebiom.2018.05.028 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Luo, Chuanming Ren, Huixia Yao, Xiaoli Shi, Zhe Liang, Fengyin Kang, Jing X. Wan, Jian-bo Pei, Zhong Su, Kuan-Pin Su, Huanxing Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title | Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title_full | Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title_fullStr | Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title_full_unstemmed | Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title_short | Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction |
title_sort | enriched brain omega-3 polyunsaturated fatty acids confer neuroprotection against microinfarction |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021265/ https://www.ncbi.nlm.nih.gov/pubmed/29880270 http://dx.doi.org/10.1016/j.ebiom.2018.05.028 |
work_keys_str_mv | AT luochuanming enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT renhuixia enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT yaoxiaoli enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT shizhe enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT liangfengyin enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT kangjingx enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT wanjianbo enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT peizhong enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT sukuanpin enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction AT suhuanxing enrichedbrainomega3polyunsaturatedfattyacidsconferneuroprotectionagainstmicroinfarction |