Cargando…
The effect of oral dabigatran etexilate on bone density, strength, and microstructure in healthy mice
Thrombin is a key component in the coagulation cascade where it converts factor V, VIII, XI, and fibrinogen. In addition to the abundant production of thrombin in the liver, osteoclasts synthesize and secrete thrombin as well. Osteoblasts express thrombin receptors, and it has been reported that thr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021300/ https://www.ncbi.nlm.nih.gov/pubmed/29963600 http://dx.doi.org/10.1016/j.bonr.2017.12.001 |
Sumario: | Thrombin is a key component in the coagulation cascade where it converts factor V, VIII, XI, and fibrinogen. In addition to the abundant production of thrombin in the liver, osteoclasts synthesize and secrete thrombin as well. Osteoblasts express thrombin receptors, and it has been reported that thrombin stimulates the expression of RANKL relatively to OPG, resulting in greater osteoclast activation and bone degradation. Pradaxa (dabigatran etexilate, DE) is a new anticoagulant, which has recently been approved for clinical use. DE is a direct thrombin inhibitor with potential to modulate the RANKL/OPG ratio and thereby limit osteoclast activation and bone degradation. The purpose of the study was to investigate whether DE can increase bone density, bone strength, and bone microstructure in healthy male and female mice and to investigate whether the effect of DE is sex-dependent. Twenty-eight 14-week-old male C57BL/6 mice were stratified by weight into 4 groups: 1. Control 3 weeks; 2. DE 3 weeks; 3. Control 6 weeks; 4. DE 6 weeks. An identical study design was applied to twenty-four 14-week-old female C57BL/6 mice. Chow mixed with DE was offered ad libitum, resulting in a dose of 1.70 mg DE/g body weight and 1.52 mg DE/g body weight, to female and male mice, respectively. The animals were euthanized after 3 or 6 weeks. Bone mineral density (aBMD) and bone mineral content (BMC) were evaluated with DEXA, 3D microstructural properties were determined with μCT, bone strength was determined with mechanical testing, and bone formation and resorption was evaluated with bone histomorphometry. In female mice, DE resulted in significant higher tibial aBMD values after 6 weeks of intervention. Furthermore, DE significantly increased tibial diaphyseal cortical bone area and tissue area, which was accompanied by significantly increased strength of the tibial shaft. DE had no effect on femoral cortical bone or on femoral and vertebral trabecular 3D microstructure. Finally, bone histomorphometry showed that DE had no effect on MS/BS or Oc.S/BS. In male mice, no bone positive effects of DE were found in any of the parameters investigated. In conclusion, intervention with DE may result in a weak positive site specific effect at tibial cortical bone in female mice, and importantly, no major deleterious effects of DE on bone tissue were seen in either female or male mice despite the relatively high dose of DE used. |
---|