Cargando…
From the betweenness centrality in street networks to structural invariants in random planar graphs
The betweenness centrality, a path-based global measure of flow, is a static predictor of congestion and load on networks. Here we demonstrate that its statistical distribution is invariant for planar networks, that are used to model many infrastructural and biological systems. Empirical analysis of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021391/ https://www.ncbi.nlm.nih.gov/pubmed/29950619 http://dx.doi.org/10.1038/s41467-018-04978-z |
_version_ | 1783335460322410496 |
---|---|
author | Kirkley, Alec Barbosa, Hugo Barthelemy, Marc Ghoshal, Gourab |
author_facet | Kirkley, Alec Barbosa, Hugo Barthelemy, Marc Ghoshal, Gourab |
author_sort | Kirkley, Alec |
collection | PubMed |
description | The betweenness centrality, a path-based global measure of flow, is a static predictor of congestion and load on networks. Here we demonstrate that its statistical distribution is invariant for planar networks, that are used to model many infrastructural and biological systems. Empirical analysis of street networks from 97 cities worldwide, along with simulations of random planar graph models, indicates the observed invariance to be a consequence of a bimodal regime consisting of an underlying tree structure for high betweenness nodes, and a low betweenness regime corresponding to loops providing local path alternatives. Furthermore, the high betweenness nodes display a non-trivial spatial clustering with increasing spatial correlation as a function of the edge-density. Our results suggest that the spatial distribution of betweenness is a more accurate discriminator than its statistics for comparing static congestion patterns and its evolution across cities as demonstrated by analyzing 200 years of street data for Paris. |
format | Online Article Text |
id | pubmed-6021391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60213912018-06-29 From the betweenness centrality in street networks to structural invariants in random planar graphs Kirkley, Alec Barbosa, Hugo Barthelemy, Marc Ghoshal, Gourab Nat Commun Article The betweenness centrality, a path-based global measure of flow, is a static predictor of congestion and load on networks. Here we demonstrate that its statistical distribution is invariant for planar networks, that are used to model many infrastructural and biological systems. Empirical analysis of street networks from 97 cities worldwide, along with simulations of random planar graph models, indicates the observed invariance to be a consequence of a bimodal regime consisting of an underlying tree structure for high betweenness nodes, and a low betweenness regime corresponding to loops providing local path alternatives. Furthermore, the high betweenness nodes display a non-trivial spatial clustering with increasing spatial correlation as a function of the edge-density. Our results suggest that the spatial distribution of betweenness is a more accurate discriminator than its statistics for comparing static congestion patterns and its evolution across cities as demonstrated by analyzing 200 years of street data for Paris. Nature Publishing Group UK 2018-06-27 /pmc/articles/PMC6021391/ /pubmed/29950619 http://dx.doi.org/10.1038/s41467-018-04978-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kirkley, Alec Barbosa, Hugo Barthelemy, Marc Ghoshal, Gourab From the betweenness centrality in street networks to structural invariants in random planar graphs |
title | From the betweenness centrality in street networks to structural invariants in random planar graphs |
title_full | From the betweenness centrality in street networks to structural invariants in random planar graphs |
title_fullStr | From the betweenness centrality in street networks to structural invariants in random planar graphs |
title_full_unstemmed | From the betweenness centrality in street networks to structural invariants in random planar graphs |
title_short | From the betweenness centrality in street networks to structural invariants in random planar graphs |
title_sort | from the betweenness centrality in street networks to structural invariants in random planar graphs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021391/ https://www.ncbi.nlm.nih.gov/pubmed/29950619 http://dx.doi.org/10.1038/s41467-018-04978-z |
work_keys_str_mv | AT kirkleyalec fromthebetweennesscentralityinstreetnetworkstostructuralinvariantsinrandomplanargraphs AT barbosahugo fromthebetweennesscentralityinstreetnetworkstostructuralinvariantsinrandomplanargraphs AT barthelemymarc fromthebetweennesscentralityinstreetnetworkstostructuralinvariantsinrandomplanargraphs AT ghoshalgourab fromthebetweennesscentralityinstreetnetworkstostructuralinvariantsinrandomplanargraphs |