Cargando…
Machine Learning and Radiogenomics: Lessons Learned and Future Directions
Due to the rapid increase in the availability of patient data, there is significant interest in precision medicine that could facilitate the development of a personalized treatment plan for each patient on an individual basis. Radiation oncology is particularly suited for predictive machine learning...
Autores principales: | Kang, John, Rancati, Tiziana, Lee, Sangkyu, Oh, Jung Hun, Kerns, Sarah L., Scott, Jacob G., Schwartz, Russell, Kim, Seyoung, Rosenstein, Barry S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021505/ https://www.ncbi.nlm.nih.gov/pubmed/29977864 http://dx.doi.org/10.3389/fonc.2018.00228 |
Ejemplares similares
-
Current role of machine learning and radiogenomics in precision neuro-oncology
por: Perillo, Teresa, et al.
Publicado: (2023) -
STROGAR – STrengthening the Reporting Of Genetic Association studies in Radiogenomics
por: Kerns, Sarah L., et al.
Publicado: (2013) -
Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals
por: Kawaguchi, Risa K., et al.
Publicado: (2021) -
Radiomics and Radiogenomics in Evaluation of Colorectal Cancer Liver Metastasis
por: Wang, Yun, et al.
Publicado: (2022) -
Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions
por: O’Sullivan, Niall J., et al.
Publicado: (2023)