Cargando…

Green leafy vegetables from two Solanum spp. (Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine‐induced cognitive and neurochemical impairments in rats

This study examined the modulatory effect of Black nightshade (Solanum nigrum L) and African eggplant (Solanum macrocarpon L) leaves on cognitive function, antioxidant status, and activities of critical enzymes of monoaminergic and cholinergic systems of neurotransmission in scopolamine‐administered...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogunsuyi, Opeyemi B., Ademiluyi, Adedayo O., Oboh, Ganiyu, Oyeleye, Sunday I., Dada, Abayomi F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021738/
https://www.ncbi.nlm.nih.gov/pubmed/29983948
http://dx.doi.org/10.1002/fsn3.628
Descripción
Sumario:This study examined the modulatory effect of Black nightshade (Solanum nigrum L) and African eggplant (Solanum macrocarpon L) leaves on cognitive function, antioxidant status, and activities of critical enzymes of monoaminergic and cholinergic systems of neurotransmission in scopolamine‐administered rats. Cognitive impairment was induced in albino rats pretreated with dietary inclusions of Black nightshade (BN) and African eggplant (AE) leaves by single administration (i.p.) of scopolamine (2 mg/kg body weight). Prior to termination of the experiment, the rats were subjected to spontaneous alternation (Y‐maze) test to assess their spatial working memory. Thereafter, activities of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO), arginase, and antioxidant enzymes (catalase, SOD, and GST) of rat brain homogenate were determined. Also, the malondialdehyde (MDA), nitrite, and GSH contents of the homogenate were determined. The results showed that pretreatment with dietary inclusions of AE and BN significantly reversed the impairment in the rats’ spatial working memory induced by scopolamine. Similarly, elevations in activities of AChE, BChE, and MAO induced by scopolamine were significantly reversed in rats pretreated with dietary inclusions of AE and BN. In addition, impaired antioxidant status induced by scopolamine was reversed by pretreatment with dietary inclusions of AE and BN. This study has shown that dietary inclusions of AE and BN could protect against cognitive and neurochemical impairments induced by scopolamine, and hence, these vegetables could be used as a source of functional foods and nutraceuticals for the prevention and management of cognitive impairments associated diseases such as Alzheimer's disease.