Cargando…
Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide
This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal block...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021838/ https://www.ncbi.nlm.nih.gov/pubmed/29799453 http://dx.doi.org/10.3390/s18061707 |
_version_ | 1783335548796010496 |
---|---|
author | Tsarev, Andrei Kolosovsky, Eugeny De Leonardis, Francesco Passaro, Vittorio M. N. |
author_facet | Tsarev, Andrei Kolosovsky, Eugeny De Leonardis, Francesco Passaro, Vittorio M. N. |
author_sort | Tsarev, Andrei |
collection | PubMed |
description | This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD) method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips) is accomplished by the 2D method of lines (MoL) with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors. |
format | Online Article Text |
id | pubmed-6021838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60218382018-07-02 Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide Tsarev, Andrei Kolosovsky, Eugeny De Leonardis, Francesco Passaro, Vittorio M. N. Sensors (Basel) Article This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD) method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips) is accomplished by the 2D method of lines (MoL) with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors. MDPI 2018-05-25 /pmc/articles/PMC6021838/ /pubmed/29799453 http://dx.doi.org/10.3390/s18061707 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tsarev, Andrei Kolosovsky, Eugeny De Leonardis, Francesco Passaro, Vittorio M. N. Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title | Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title_full | Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title_fullStr | Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title_full_unstemmed | Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title_short | Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide |
title_sort | numerical simulation of a novel sensing approach based on abnormal blocking by periodic grating strips near the silicon wire waveguide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021838/ https://www.ncbi.nlm.nih.gov/pubmed/29799453 http://dx.doi.org/10.3390/s18061707 |
work_keys_str_mv | AT tsarevandrei numericalsimulationofanovelsensingapproachbasedonabnormalblockingbyperiodicgratingstripsnearthesiliconwirewaveguide AT kolosovskyeugeny numericalsimulationofanovelsensingapproachbasedonabnormalblockingbyperiodicgratingstripsnearthesiliconwirewaveguide AT deleonardisfrancesco numericalsimulationofanovelsensingapproachbasedonabnormalblockingbyperiodicgratingstripsnearthesiliconwirewaveguide AT passarovittoriomn numericalsimulationofanovelsensingapproachbasedonabnormalblockingbyperiodicgratingstripsnearthesiliconwirewaveguide |