Cargando…
Human Part Segmentation in Depth Images with Annotated Part Positions
We present a method of segmenting human parts in depth images, when provided the image positions of the body parts. The goal is to facilitate per-pixel labelling of large datasets of human images, which are used for training and testing algorithms for pose estimation and automatic segmentation. A co...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021853/ https://www.ncbi.nlm.nih.gov/pubmed/29891813 http://dx.doi.org/10.3390/s18061900 |
Sumario: | We present a method of segmenting human parts in depth images, when provided the image positions of the body parts. The goal is to facilitate per-pixel labelling of large datasets of human images, which are used for training and testing algorithms for pose estimation and automatic segmentation. A common technique in image segmentation is to represent an image as a two-dimensional grid graph, with one node for each pixel and edges between neighbouring pixels. We introduce a graph with distinct layers of nodes to model occlusion of the body by the arms. Once the graph is constructed, the annotated part positions are used as seeds for a standard interactive segmentation algorithm. Our method is evaluated on two public datasets containing depth images of humans from a frontal view. It produces a mean per-class accuracy of 93.55% on the first dataset, compared to 87.91% (random forest and graph cuts) and 90.31% (random forest and Markov random field). It also achieves a per-class accuracy of 90.60% on the second dataset. Future work can experiment with various methods for creating the graph layers to accurately model occlusion. |
---|