Cargando…
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
Spectral-spatial classification has been widely applied for remote sensing applications, especially for hyperspectral imagery. Traditional methods mainly focus on local spatial similarity and neglect nonlocal spatial similarity. Recently, nonlocal self-similarity (NLSS) has gradually gained support...
Autores principales: | Yu, Haoyang, Gao, Lianru, Liao, Wenzhi, Zhang, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021858/ https://www.ncbi.nlm.nih.gov/pubmed/29795020 http://dx.doi.org/10.3390/s18061695 |
Ejemplares similares
-
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
por: Chen, Eryang, et al.
Publicado: (2021) -
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
Motor imagery classification using sparse representations: an exploratory study
por: de Menezes, José Antonio Alves, et al.
Publicado: (2023) -
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023)