Cargando…
Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter
The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and t...
Autores principales: | Sung, Kwangjae, Lee, Dong Kyu ‘Roy’, Kim, Hwangnam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021914/ https://www.ncbi.nlm.nih.gov/pubmed/29861460 http://dx.doi.org/10.3390/s18061722 |
Ejemplares similares
-
Pedestrian Positioning Using a Double-Stacked Particle Filter in Indoor Wireless Networks
por: Sung, Kwangjae, et al.
Publicado: (2019) -
Probability-Based Indoor Positioning Algorithm Using iBeacons
por: Wu, Tianli, et al.
Publicado: (2019) -
Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi
por: Chen, Jing, et al.
Publicado: (2018) -
Learning iBeacon
:
build proximity applications for iOS using Apple's groundbreaking iBeacon technology
por: Gilchrist, Craig
Publicado: (2014) -
Pedestrian Positioning Using an Enhanced Ensemble Transform Kalman Filter
por: Sung, Kwangjae
Publicado: (2023)