Cargando…
Accurate Fall Detection in a Top View Privacy Preserving Configuration
Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021973/ https://www.ncbi.nlm.nih.gov/pubmed/29844298 http://dx.doi.org/10.3390/s18061754 |
_version_ | 1783335577965297664 |
---|---|
author | Ricciuti, Manola Spinsante, Susanna Gambi, Ennio |
author_facet | Ricciuti, Manola Spinsante, Susanna Gambi, Ennio |
author_sort | Ricciuti, Manola |
collection | PubMed |
description | Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive. |
format | Online Article Text |
id | pubmed-6021973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60219732018-07-02 Accurate Fall Detection in a Top View Privacy Preserving Configuration Ricciuti, Manola Spinsante, Susanna Gambi, Ennio Sensors (Basel) Article Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive. MDPI 2018-05-29 /pmc/articles/PMC6021973/ /pubmed/29844298 http://dx.doi.org/10.3390/s18061754 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ricciuti, Manola Spinsante, Susanna Gambi, Ennio Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title_full | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title_fullStr | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title_full_unstemmed | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title_short | Accurate Fall Detection in a Top View Privacy Preserving Configuration |
title_sort | accurate fall detection in a top view privacy preserving configuration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021973/ https://www.ncbi.nlm.nih.gov/pubmed/29844298 http://dx.doi.org/10.3390/s18061754 |
work_keys_str_mv | AT ricciutimanola accuratefalldetectioninatopviewprivacypreservingconfiguration AT spinsantesusanna accuratefalldetectioninatopviewprivacypreservingconfiguration AT gambiennio accuratefalldetectioninatopviewprivacypreservingconfiguration |