Cargando…
Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets
In recent decades, rice disease co-epidemics have caused tremendous damage to crop production in both China and Southeast Asia. A variety of remote sensing based approaches have been developed and applied to map diseases distribution using coarse- to moderate-resolution imagery. However, the detecti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021985/ https://www.ncbi.nlm.nih.gov/pubmed/29891814 http://dx.doi.org/10.3390/s18061901 |
_version_ | 1783335580835250176 |
---|---|
author | Shi, Yue Huang, Wenjiang Ye, Huichun Ruan, Chao Xing, Naichen Geng, Yun Dong, Yingying Peng, Dailiang |
author_facet | Shi, Yue Huang, Wenjiang Ye, Huichun Ruan, Chao Xing, Naichen Geng, Yun Dong, Yingying Peng, Dailiang |
author_sort | Shi, Yue |
collection | PubMed |
description | In recent decades, rice disease co-epidemics have caused tremendous damage to crop production in both China and Southeast Asia. A variety of remote sensing based approaches have been developed and applied to map diseases distribution using coarse- to moderate-resolution imagery. However, the detection and discrimination of various disease species infecting rice were seldom assessed using high spatial resolution data. The aims of this study were (1) to develop a set of normalized two-stage vegetation indices (VIs) for characterizing the progressive development of different diseases with rice; (2) to explore the performance of combined normalized two-stage VIs in partial least square discriminant analysis (PLS-DA); and (3) to map and evaluate the damage caused by rice diseases at fine spatial scales, for the first time using bi-temporal, high spatial resolution imagery from PlanetScope datasets at a 3 m spatial resolution. Our findings suggest that the primary biophysical parameters caused by different disease (e.g., changes in leaf area, pigment contents, or canopy morphology) can be captured using combined normalized two-stage VIs. PLS-DA was able to classify rice diseases at a sub-field scale, with an overall accuracy of 75.62% and a Kappa value of 0.47. The approach was successfully applied during a typical co-epidemic outbreak of rice dwarf (Rice dwarf virus, RDV), rice blast (Magnaporthe oryzae), and glume blight (Phyllosticta glumarum) in Guangxi Province, China. Furthermore, our approach highlighted the feasibility of the method in capturing heterogeneous disease patterns at fine spatial scales over the large spatial extents. |
format | Online Article Text |
id | pubmed-6021985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60219852018-07-02 Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets Shi, Yue Huang, Wenjiang Ye, Huichun Ruan, Chao Xing, Naichen Geng, Yun Dong, Yingying Peng, Dailiang Sensors (Basel) Article In recent decades, rice disease co-epidemics have caused tremendous damage to crop production in both China and Southeast Asia. A variety of remote sensing based approaches have been developed and applied to map diseases distribution using coarse- to moderate-resolution imagery. However, the detection and discrimination of various disease species infecting rice were seldom assessed using high spatial resolution data. The aims of this study were (1) to develop a set of normalized two-stage vegetation indices (VIs) for characterizing the progressive development of different diseases with rice; (2) to explore the performance of combined normalized two-stage VIs in partial least square discriminant analysis (PLS-DA); and (3) to map and evaluate the damage caused by rice diseases at fine spatial scales, for the first time using bi-temporal, high spatial resolution imagery from PlanetScope datasets at a 3 m spatial resolution. Our findings suggest that the primary biophysical parameters caused by different disease (e.g., changes in leaf area, pigment contents, or canopy morphology) can be captured using combined normalized two-stage VIs. PLS-DA was able to classify rice diseases at a sub-field scale, with an overall accuracy of 75.62% and a Kappa value of 0.47. The approach was successfully applied during a typical co-epidemic outbreak of rice dwarf (Rice dwarf virus, RDV), rice blast (Magnaporthe oryzae), and glume blight (Phyllosticta glumarum) in Guangxi Province, China. Furthermore, our approach highlighted the feasibility of the method in capturing heterogeneous disease patterns at fine spatial scales over the large spatial extents. MDPI 2018-06-11 /pmc/articles/PMC6021985/ /pubmed/29891814 http://dx.doi.org/10.3390/s18061901 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Yue Huang, Wenjiang Ye, Huichun Ruan, Chao Xing, Naichen Geng, Yun Dong, Yingying Peng, Dailiang Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title | Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title_full | Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title_fullStr | Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title_full_unstemmed | Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title_short | Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets |
title_sort | partial least square discriminant analysis based on normalized two-stage vegetation indices for mapping damage from rice diseases using planetscope datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021985/ https://www.ncbi.nlm.nih.gov/pubmed/29891814 http://dx.doi.org/10.3390/s18061901 |
work_keys_str_mv | AT shiyue partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT huangwenjiang partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT yehuichun partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT ruanchao partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT xingnaichen partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT gengyun partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT dongyingying partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets AT pengdailiang partialleastsquarediscriminantanalysisbasedonnormalizedtwostagevegetationindicesformappingdamagefromricediseasesusingplanetscopedatasets |