Cargando…

Strain Sensitivity Control of an In-Series Silica and Polymer FBG

This work reports on the use of an in-series silica and polymer fiber Bragg grating (FBG) to control the FBG strain sensitivities and enhance in the case of the polymer fiber Bragg grating (PFBG). Due to differences in the Young’s Modulus of the fibers employed, the amount of strain is unequally dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Ricardo, Bilro, Lúcia, Nogueira, Rogério
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022129/
https://www.ncbi.nlm.nih.gov/pubmed/29890678
http://dx.doi.org/10.3390/s18061884
Descripción
Sumario:This work reports on the use of an in-series silica and polymer fiber Bragg grating (FBG) to control the FBG strain sensitivities and enhance in the case of the polymer fiber Bragg grating (PFBG). Due to differences in the Young’s Modulus of the fibers employed, the amount of strain is unequally distributed in each fiber section. By acting on the silica fiber length, it was possible to control the strain sensitivity of the two FBGs, allowing a polymer FBG strain sensitivity much higher than the one found in the elementary fiber to be obtained. The influence of the diameter of the polymer fiber on the strain sensitivities of the FBGs was also investigated. Results have shown that, besides the strain sensitivity control, an even greater improvement in the PFBG strain sensitivity can be achieved.