Cargando…
Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate
Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022164/ https://www.ncbi.nlm.nih.gov/pubmed/29865289 http://dx.doi.org/10.3390/s18061802 |
_version_ | 1783335620886659072 |
---|---|
author | Gonzalez Viejo, Claudia Fuentes, Sigfredo Torrico, Damir D. Dunshea, Frank R. |
author_facet | Gonzalez Viejo, Claudia Fuentes, Sigfredo Torrico, Damir D. Dunshea, Frank R. |
author_sort | Gonzalez Viejo, Claudia |
collection | PubMed |
description | Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example application in chocolate consumption using machine learning (ML). The RVA used a computer vision algorithm based on luminosity changes on the different RGB color channels using three face-regions (forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric monitor and a finger sensor were used. Results showed high correlations with the G color channel (R(2) = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR, magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application for the sensory analysis of chocolate showed significant correlations between changes in HR and BP with chocolate hardness and purchase intention. |
format | Online Article Text |
id | pubmed-6022164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60221642018-07-02 Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate Gonzalez Viejo, Claudia Fuentes, Sigfredo Torrico, Damir D. Dunshea, Frank R. Sensors (Basel) Article Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example application in chocolate consumption using machine learning (ML). The RVA used a computer vision algorithm based on luminosity changes on the different RGB color channels using three face-regions (forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric monitor and a finger sensor were used. Results showed high correlations with the G color channel (R(2) = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR, magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application for the sensory analysis of chocolate showed significant correlations between changes in HR and BP with chocolate hardness and purchase intention. MDPI 2018-06-03 /pmc/articles/PMC6022164/ /pubmed/29865289 http://dx.doi.org/10.3390/s18061802 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gonzalez Viejo, Claudia Fuentes, Sigfredo Torrico, Damir D. Dunshea, Frank R. Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title | Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title_full | Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title_fullStr | Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title_full_unstemmed | Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title_short | Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate |
title_sort | non-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: a case study for chocolate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022164/ https://www.ncbi.nlm.nih.gov/pubmed/29865289 http://dx.doi.org/10.3390/s18061802 |
work_keys_str_mv | AT gonzalezviejoclaudia noncontactheartrateandbloodpressureestimationsfromvideoanalysisandmachinelearningmodellingappliedtofoodsensoryresponsesacasestudyforchocolate AT fuentessigfredo noncontactheartrateandbloodpressureestimationsfromvideoanalysisandmachinelearningmodellingappliedtofoodsensoryresponsesacasestudyforchocolate AT torricodamird noncontactheartrateandbloodpressureestimationsfromvideoanalysisandmachinelearningmodellingappliedtofoodsensoryresponsesacasestudyforchocolate AT dunsheafrankr noncontactheartrateandbloodpressureestimationsfromvideoanalysisandmachinelearningmodellingappliedtofoodsensoryresponsesacasestudyforchocolate |