Cargando…
Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
Controlling the electronic structure of heterogeneous metal catalysts is considered an efficient method to optimize catalytic activity. Here, we introduce a new electronic effect induced by the synergy of a stable electride and bimetallic nanoparticles for a chemoselective reduction reaction. The el...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022174/ https://www.ncbi.nlm.nih.gov/pubmed/30034737 http://dx.doi.org/10.1039/c6sc01864e |
_version_ | 1783335623221837824 |
---|---|
author | Ye, Tian-Nan Li, Jiang Kitano, Masaaki Sasase, Masato Hosono, Hideo |
author_facet | Ye, Tian-Nan Li, Jiang Kitano, Masaaki Sasase, Masato Hosono, Hideo |
author_sort | Ye, Tian-Nan |
collection | PubMed |
description | Controlling the electronic structure of heterogeneous metal catalysts is considered an efficient method to optimize catalytic activity. Here, we introduce a new electronic effect induced by the synergy of a stable electride and bimetallic nanoparticles for a chemoselective reduction reaction. The electride [Ca(24)Al(28)O(64)](4+)·(e(–))(4), with extremely low work function, promotes the superior activity and selectivity of a Ru–Fe nano-alloy for the conversion of α,β-unsaturated aldehydes to unsaturated alcohols in a solvent-free system. The catalyst is easily separable from the product solution and reusable without notable deactivation. Mechanistic studies demonstrate that electron injection from the electride to the Ru–Fe bimetallic nanoparticles promotes H(2) dissociation on the highly charged active metal and preferential adsorption of C[double bond, length as m-dash]O bonds over C[double bond, length as m-dash]Cs bond of the unsaturated aldehydes, to obtain the thermodynamically unfavorable but industrially important product. |
format | Online Article Text |
id | pubmed-6022174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-60221742018-07-20 Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction Ye, Tian-Nan Li, Jiang Kitano, Masaaki Sasase, Masato Hosono, Hideo Chem Sci Chemistry Controlling the electronic structure of heterogeneous metal catalysts is considered an efficient method to optimize catalytic activity. Here, we introduce a new electronic effect induced by the synergy of a stable electride and bimetallic nanoparticles for a chemoselective reduction reaction. The electride [Ca(24)Al(28)O(64)](4+)·(e(–))(4), with extremely low work function, promotes the superior activity and selectivity of a Ru–Fe nano-alloy for the conversion of α,β-unsaturated aldehydes to unsaturated alcohols in a solvent-free system. The catalyst is easily separable from the product solution and reusable without notable deactivation. Mechanistic studies demonstrate that electron injection from the electride to the Ru–Fe bimetallic nanoparticles promotes H(2) dissociation on the highly charged active metal and preferential adsorption of C[double bond, length as m-dash]O bonds over C[double bond, length as m-dash]Cs bond of the unsaturated aldehydes, to obtain the thermodynamically unfavorable but industrially important product. Royal Society of Chemistry 2016-09-01 2016-05-24 /pmc/articles/PMC6022174/ /pubmed/30034737 http://dx.doi.org/10.1039/c6sc01864e Text en This journal is © The Royal Society of Chemistry 2016 https://creativecommons.org/licenses/by/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Ye, Tian-Nan Li, Jiang Kitano, Masaaki Sasase, Masato Hosono, Hideo Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction |
title | Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
|
title_full | Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
|
title_fullStr | Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
|
title_full_unstemmed | Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
|
title_short | Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction
|
title_sort | electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022174/ https://www.ncbi.nlm.nih.gov/pubmed/30034737 http://dx.doi.org/10.1039/c6sc01864e |
work_keys_str_mv | AT yetiannan electronicinteractionsbetweenastableelectrideandananoalloycontrolthechemoselectivereductionreaction AT lijiang electronicinteractionsbetweenastableelectrideandananoalloycontrolthechemoselectivereductionreaction AT kitanomasaaki electronicinteractionsbetweenastableelectrideandananoalloycontrolthechemoselectivereductionreaction AT sasasemasato electronicinteractionsbetweenastableelectrideandananoalloycontrolthechemoselectivereductionreaction AT hosonohideo electronicinteractionsbetweenastableelectrideandananoalloycontrolthechemoselectivereductionreaction |