Cargando…
FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework
Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022175/ https://www.ncbi.nlm.nih.gov/pubmed/29890644 http://dx.doi.org/10.3390/s18061877 |
_version_ | 1783335623454621696 |
---|---|
author | Rodríguez, Alfonso Valverde, Juan Portilla, Jorge Otero, Andrés Riesgo, Teresa de la Torre, Eduardo |
author_facet | Rodríguez, Alfonso Valverde, Juan Portilla, Jorge Otero, Andrés Riesgo, Teresa de la Torre, Eduardo |
author_sort | Rodríguez, Alfonso |
collection | PubMed |
description | Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the steadily increasing requirements in computing performance, while keeping energy efficiency and the adaptability imposed by the interaction with the physical world. In this context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with smart power management strategies, are a suitable solution. However, they usually fail in user accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented. This framework provides a hardware-based processing architecture, an automated toolchain, and a runtime to transparently generate and manage reconfigurable systems from high-level system descriptions without additional user intervention. Moreover, it provides users with support for dynamically adapting the available computing resources to switch the working point of the architecture in a solution space defined by computing performance, energy consumption and fault tolerance. Results show that it is indeed possible to explore this solution space at run time and prove that the proposed framework is a competitive alternative to software-based edge computing platforms, being able to provide not only faster solutions, but also higher energy efficiency for computing-intensive algorithms with significant levels of data-level parallelism. |
format | Online Article Text |
id | pubmed-6022175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60221752018-07-02 FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework Rodríguez, Alfonso Valverde, Juan Portilla, Jorge Otero, Andrés Riesgo, Teresa de la Torre, Eduardo Sensors (Basel) Article Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the steadily increasing requirements in computing performance, while keeping energy efficiency and the adaptability imposed by the interaction with the physical world. In this context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with smart power management strategies, are a suitable solution. However, they usually fail in user accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented. This framework provides a hardware-based processing architecture, an automated toolchain, and a runtime to transparently generate and manage reconfigurable systems from high-level system descriptions without additional user intervention. Moreover, it provides users with support for dynamically adapting the available computing resources to switch the working point of the architecture in a solution space defined by computing performance, energy consumption and fault tolerance. Results show that it is indeed possible to explore this solution space at run time and prove that the proposed framework is a competitive alternative to software-based edge computing platforms, being able to provide not only faster solutions, but also higher energy efficiency for computing-intensive algorithms with significant levels of data-level parallelism. MDPI 2018-06-08 /pmc/articles/PMC6022175/ /pubmed/29890644 http://dx.doi.org/10.3390/s18061877 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodríguez, Alfonso Valverde, Juan Portilla, Jorge Otero, Andrés Riesgo, Teresa de la Torre, Eduardo FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title | FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title_full | FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title_fullStr | FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title_full_unstemmed | FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title_short | FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo(3) Framework |
title_sort | fpga-based high-performance embedded systems for adaptive edge computing in cyber-physical systems: the artico(3) framework |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022175/ https://www.ncbi.nlm.nih.gov/pubmed/29890644 http://dx.doi.org/10.3390/s18061877 |
work_keys_str_mv | AT rodriguezalfonso fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework AT valverdejuan fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework AT portillajorge fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework AT oteroandres fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework AT riesgoteresa fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework AT delatorreeduardo fpgabasedhighperformanceembeddedsystemsforadaptiveedgecomputingincyberphysicalsystemstheartico3framework |