Cargando…
Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation
It is well known that in a Kalman filtering framework, all sensor observations or measurements contribute toward improving the accuracy of state estimation, but, as observations become older, their impact toward improving estimations becomes smaller to the point that they offer no practical benefit....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022198/ https://www.ncbi.nlm.nih.gov/pubmed/29914112 http://dx.doi.org/10.3390/s18061947 |
_version_ | 1783335628892536832 |
---|---|
author | Yoder, Josiah Baek, Stanley Kwon, Hyukseong Pack, Daniel |
author_facet | Yoder, Josiah Baek, Stanley Kwon, Hyukseong Pack, Daniel |
author_sort | Yoder, Josiah |
collection | PubMed |
description | It is well known that in a Kalman filtering framework, all sensor observations or measurements contribute toward improving the accuracy of state estimation, but, as observations become older, their impact toward improving estimations becomes smaller to the point that they offer no practical benefit. In this paper, we provide an practical technique for determining the merit of an old observation using system parameters. We demonstrate that the benefit provided by an old observation decreases exponentially with the number of observations captured and processed after it. To quantify the merit of an old observation, we use the filter gain for the delayed observation, found by re-processing all past measurements between the delayed observation and the current time estimate, a high cost task. We demonstrate the value of the proposed technique to system designers using both nearly-constant position (random walk) and nearly-constant velocity (discrete white-noise acceleration, DWNA) cases. In these cases, the merit (that is, gain) of an old observation can be computed in closed-form without iteration. The analysis technique incorporates the state transition function, the observation function, the state transition noise, and the observation noise to quantify the merit of an old observation. Numerical simulations demonstrate the accuracy of these predictions even when measurements arrive randomly according to a Poisson distribution. Simulations confirm that our approach correctly predicts which observations increase estimation accuracy based on their delay by comparing a single-step out-of-sequence Kalman filter with a selective version that drops out-of-sequence observations. This approach may be used in system design to evaluate feasibility of a multi-agent target tracking system, and when selecting system parameters including sensor rates and network latencies. |
format | Online Article Text |
id | pubmed-6022198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60221982018-07-02 Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation Yoder, Josiah Baek, Stanley Kwon, Hyukseong Pack, Daniel Sensors (Basel) Article It is well known that in a Kalman filtering framework, all sensor observations or measurements contribute toward improving the accuracy of state estimation, but, as observations become older, their impact toward improving estimations becomes smaller to the point that they offer no practical benefit. In this paper, we provide an practical technique for determining the merit of an old observation using system parameters. We demonstrate that the benefit provided by an old observation decreases exponentially with the number of observations captured and processed after it. To quantify the merit of an old observation, we use the filter gain for the delayed observation, found by re-processing all past measurements between the delayed observation and the current time estimate, a high cost task. We demonstrate the value of the proposed technique to system designers using both nearly-constant position (random walk) and nearly-constant velocity (discrete white-noise acceleration, DWNA) cases. In these cases, the merit (that is, gain) of an old observation can be computed in closed-form without iteration. The analysis technique incorporates the state transition function, the observation function, the state transition noise, and the observation noise to quantify the merit of an old observation. Numerical simulations demonstrate the accuracy of these predictions even when measurements arrive randomly according to a Poisson distribution. Simulations confirm that our approach correctly predicts which observations increase estimation accuracy based on their delay by comparing a single-step out-of-sequence Kalman filter with a selective version that drops out-of-sequence observations. This approach may be used in system design to evaluate feasibility of a multi-agent target tracking system, and when selecting system parameters including sensor rates and network latencies. MDPI 2018-06-15 /pmc/articles/PMC6022198/ /pubmed/29914112 http://dx.doi.org/10.3390/s18061947 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yoder, Josiah Baek, Stanley Kwon, Hyukseong Pack, Daniel Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title | Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title_full | Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title_fullStr | Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title_full_unstemmed | Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title_short | Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation |
title_sort | exploring the exponentially decaying merit of an out-of-sequence observation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022198/ https://www.ncbi.nlm.nih.gov/pubmed/29914112 http://dx.doi.org/10.3390/s18061947 |
work_keys_str_mv | AT yoderjosiah exploringtheexponentiallydecayingmeritofanoutofsequenceobservation AT baekstanley exploringtheexponentiallydecayingmeritofanoutofsequenceobservation AT kwonhyukseong exploringtheexponentiallydecayingmeritofanoutofsequenceobservation AT packdaniel exploringtheexponentiallydecayingmeritofanoutofsequenceobservation |