Cargando…
A unifying framework for joint trait analysis under a non-infinitesimal model
MOTIVATION: A large proportion of risk regions identified by genome-wide association studies (GWAS) are shared across multiple diseases and traits. Understanding whether this clustering is due to sharing of causal variants or chance colocalization can provide insights into shared etiology of complex...
Autores principales: | Johnson, Ruth, Shi, Huwenbo, Pasaniuc, Bogdan, Sankararaman, Sriram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022541/ https://www.ncbi.nlm.nih.gov/pubmed/29949958 http://dx.doi.org/10.1093/bioinformatics/bty254 |
Ejemplares similares
-
A scalable estimator of SNP heritability for biobank-scale data
por: Wu, Yue, et al.
Publicado: (2018) -
An optimization framework for network annotation
por: Patkar, Sushant, et al.
Publicado: (2018) -
Finding associated variants in genome-wide association studies on multiple traits
por: Gai, Lisa, et al.
Publicado: (2018) -
Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations
por: Smaili, Fatima Zohra, et al.
Publicado: (2018) -
NeuroMorphoVis: a collaborative framework for analysis and visualization of neuronal morphology skeletons reconstructed from microscopy stacks
por: Abdellah, Marwan, et al.
Publicado: (2018)