Cargando…
Random forest based similarity learning for single cell RNA sequencing data
MOTIVATION: Genome-wide transcriptome sequencing applied to single cells (scRNA-seq) is rapidly becoming an assay of choice across many fields of biological and biomedical research. Scientific objectives often revolve around discovery or characterization of types or sub-types of cells, and therefore...
Autores principales: | Pouyan, Maziyar Baran, Kostka, Dennis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022547/ https://www.ncbi.nlm.nih.gov/pubmed/29950006 http://dx.doi.org/10.1093/bioinformatics/bty260 |
Ejemplares similares
-
Haplotype phasing in single-cell DNA-sequencing data
por: Satas, Gryte, et al.
Publicado: (2018) -
Quantifying the similarity of topological domains across normal and cancer human cell types
por: Sauerwald, Natalie, et al.
Publicado: (2018) -
Covariate-dependent negative binomial factor analysis of RNA sequencing data
por: Zamani Dadaneh, Siamak, et al.
Publicado: (2018) -
Convolutional neural networks for classification of alignments of non-coding RNA sequences
por: Aoki, Genta, et al.
Publicado: (2018) -
aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences
por: Glouzon, Jean-Pierre Séhi, et al.
Publicado: (2018)