Cargando…
Learning with multiple pairwise kernels for drug bioactivity prediction
MOTIVATION: Many inference problems in bioinformatics, including drug bioactivity prediction, can be formulated as pairwise learning problems, in which one is interested in making predictions for pairs of objects, e.g. drugs and their targets. Kernel-based approaches have emerged as powerful tools f...
Autores principales: | Cichonska, Anna, Pahikkala, Tapio, Szedmak, Sandor, Julkunen, Heli, Airola, Antti, Heinonen, Markus, Aittokallio, Tero, Rousu, Juho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022556/ https://www.ncbi.nlm.nih.gov/pubmed/29949975 http://dx.doi.org/10.1093/bioinformatics/bty277 |
Ejemplares similares
-
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
por: Julkunen, Heli, et al.
Publicado: (2020) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors
por: Cichonska, Anna, et al.
Publicado: (2017) -
mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion
por: Jokinen, Emmi, et al.
Publicado: (2018) -
Towards structured output prediction of enzyme function
por: Astikainen, Katja, et al.
Publicado: (2008)