Cargando…
Covariate-dependent negative binomial factor analysis of RNA sequencing data
MOTIVATION: High-throughput sequencing technologies, in particular RNA sequencing (RNA-seq), have become the basic practice for genomic studies in biomedical research. In addition to studying genes individually, for example, through differential expression analysis, investigating co-ordinated expres...
Autores principales: | Zamani Dadaneh, Siamak, Zhou, Mingyuan, Qian, Xiaoning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022606/ https://www.ncbi.nlm.nih.gov/pubmed/29949981 http://dx.doi.org/10.1093/bioinformatics/bty237 |
Ejemplares similares
-
Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
por: Dadaneh, Siamak Zamani, et al.
Publicado: (2020) -
Convolutional neural networks for classification of alignments of non-coding RNA sequences
por: Aoki, Genta, et al.
Publicado: (2018) -
Random forest based similarity learning for single cell RNA sequencing data
por: Pouyan, Maziyar Baran, et al.
Publicado: (2018) -
aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences
por: Glouzon, Jean-Pierre Séhi, et al.
Publicado: (2018) -
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
por: Asgari, Ehsaneddin, et al.
Publicado: (2018)