Cargando…
flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry
MOTIVATION: Identification of cell populations in flow cytometry is a critical part of the analysis and lays the groundwork for many applications and research discovery. The current paradigm of manual analysis is time consuming and subjective. A common goal of users is to replace manual analysis wit...
Autores principales: | Lux, Markus, Brinkman, Ryan Remy, Chauve, Cedric, Laing, Adam, Lorenc, Anna, Abeler-Dörner, Lucie, Hammer, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022609/ https://www.ncbi.nlm.nih.gov/pubmed/29462241 http://dx.doi.org/10.1093/bioinformatics/bty082 |
Ejemplares similares
-
Automated identification of maximal differential cell populations in flow cytometry data
por: Yue, Alice, et al.
Publicado: (2021) -
Flow Cytometry Bioinformatics
por: O'Neill, Kieran, et al.
Publicado: (2013) -
Flow cytometry data standards
por: Spidlen, Josef, et al.
Publicado: (2011) -
A Survey of Flow Cytometry Data Analysis Methods
por: Bashashati, Ali, et al.
Publicado: (2009) -
flowClust: a Bioconductor package for automated gating of flow cytometry data
por: Lo, Kenneth, et al.
Publicado: (2009)