Cargando…
DeepFam: deep learning based alignment-free method for protein family modeling and prediction
MOTIVATION: A large number of newly sequenced proteins are generated by the next-generation sequencing technologies and the biochemical function assignment of the proteins is an important task. However, biological experiments are too expensive to characterize such a large number of protein sequences...
Autores principales: | Seo, Seokjun, Oh, Minsik, Park, Youngjune, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022622/ https://www.ncbi.nlm.nih.gov/pubmed/29949966 http://dx.doi.org/10.1093/bioinformatics/bty275 |
Ejemplares similares
-
aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences
por: Glouzon, Jean-Pierre Séhi, et al.
Publicado: (2018) -
Protein threading using residue co-variation and deep learning
por: Zhu, Jianwei, et al.
Publicado: (2018) -
COSSMO: predicting competitive alternative splice site selection using deep learning
por: Bretschneider, Hannes, et al.
Publicado: (2018) -
DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy
por: Li, Yu, et al.
Publicado: (2018) -
PrimAlign: PageRank-inspired Markovian alignment for large biological networks
por: Kalecky, Karel, et al.
Publicado: (2018)