Cargando…
SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
MOTIVATION: Recent success in metabolite identification from tandem mass spectra has been led by machine learning, which has two stages: mapping mass spectra to molecular fingerprint vectors and then retrieving candidate molecules from the database. In the first stage, i.e. fingerprint prediction, s...
Autores principales: | Nguyen, Dai Hai, Nguyen, Canh Hao, Mamitsuka, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022642/ https://www.ncbi.nlm.nih.gov/pubmed/29950009 http://dx.doi.org/10.1093/bioinformatics/bty252 |
Ejemplares similares
-
ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra
por: Nguyen, Dai Hai, et al.
Publicado: (2019) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
por: Mukherjee, Sumit, et al.
Publicado: (2018) -
Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints
por: Ludwig, Marcus, et al.
Publicado: (2018) -
Author Index
Publicado: (2018)