Cargando…
A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains
MOTIVATION: Antimicrobial resistance (AMR) is becoming a huge problem in both developed and developing countries, and identifying strains resistant or susceptible to certain antibiotics is essential in fighting against antibiotic-resistant pathogens. Whole-genome sequences have been collected for di...
Autores principales: | Her, Hsuan-Lin, Wu, Yu-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022653/ https://www.ncbi.nlm.nih.gov/pubmed/29949970 http://dx.doi.org/10.1093/bioinformatics/bty276 |
Ejemplares similares
-
Personalized regression enables sample-specific pan-cancer analysis
por: Lengerich, Benjamin J, et al.
Publicado: (2018) -
A gene–phenotype relationship extraction pipeline from the biomedical literature using a representation learning approach
por: Xing, Wenhui, et al.
Publicado: (2018) -
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018) -
Protein threading using residue co-variation and deep learning
por: Zhu, Jianwei, et al.
Publicado: (2018) -
A graph-based approach to diploid genome assembly
por: Garg, Shilpa, et al.
Publicado: (2018)