Cargando…
Deep neural networks and distant supervision for geographic location mention extraction
MOTIVATION: Virus phylogeographers rely on DNA sequences of viruses and the locations of the infected hosts found in public sequence databases like GenBank for modeling virus spread. However, the locations in GenBank records are often only at the country or state level, and may require phylogeograph...
Autores principales: | Magge, Arjun, Weissenbacher, Davy, Sarker, Abeed, Scotch, Matthew, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022665/ https://www.ncbi.nlm.nih.gov/pubmed/29950020 http://dx.doi.org/10.1093/bioinformatics/bty273 |
Ejemplares similares
-
Extracting geographic locations from the literature for virus phylogeography using supervised and distant supervision methods
por: Weissenbacher, Davy, et al.
Publicado: (2017) -
Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature
por: Magge, Arjun, et al.
Publicado: (2019) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Classifying tumors by supervised network propagation
por: Zhang, Wei, et al.
Publicado: (2018) -
Convolutional neural networks for classification of alignments of non-coding RNA sequences
por: Aoki, Genta, et al.
Publicado: (2018)