Cargando…
aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences
MOTIVATION: Predicting the conserved secondary structure of homologous ribonucleic acid (RNA) sequences is crucial for understanding RNA functions. However, fast and accurate RNA structure prediction is challenging, especially when the number and the divergence of homologous RNA increases. To addres...
Autores principales: | Glouzon, Jean-Pierre Séhi, Ouangraoua, Aïda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022685/ https://www.ncbi.nlm.nih.gov/pubmed/29949960 http://dx.doi.org/10.1093/bioinformatics/bty234 |
Ejemplares similares
-
aliFreeFoldMulti: alignment-free method to predict secondary structures of multiple RNA homologs
por: Bossanyi, Marc-André, et al.
Publicado: (2020) -
DeepFam: deep learning based alignment-free method for protein family modeling and prediction
por: Seo, Seokjun, et al.
Publicado: (2018) -
PrimAlign: PageRank-inspired Markovian alignment for large biological networks
por: Kalecky, Karel, et al.
Publicado: (2018) -
HFSP: high speed homology-driven function annotation of proteins
por: Mahlich, Yannick, et al.
Publicado: (2018) -
Convolutional neural networks for classification of alignments of non-coding RNA sequences
por: Aoki, Genta, et al.
Publicado: (2018)