Cargando…
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
MOTIVATION: Single cell RNA-seq (scRNA-seq) data contains a wealth of information which has to be inferred computationally from the observed sequencing reads. As the ability to sequence more cells improves rapidly, existing computational tools suffer from three problems. (i) The decreased reads-per-...
Autores principales: | Mukherjee, Sumit, Zhang, Yue, Fan, Joshua, Seelig, Georg, Kannan, Sreeram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022691/ https://www.ncbi.nlm.nih.gov/pubmed/29949988 http://dx.doi.org/10.1093/bioinformatics/bty293 |
Ejemplares similares
-
A statistical simulator scDesign for rational scRNA-seq experimental design
por: Li, Wei Vivian, et al.
Publicado: (2019) -
A scalable estimator of SNP heritability for biobank-scale data
por: Wu, Yue, et al.
Publicado: (2018) -
Improved pathway reconstruction from RNA interference screens by exploiting off-target effects
por: Srivatsa, Sumana, et al.
Publicado: (2018) -
SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
por: Nguyen, Dai Hai, et al.
Publicado: (2018) -
Strand-seq enables reliable separation of long reads by chromosome via expectation maximization
por: Ghareghani, Maryam, et al.
Publicado: (2018)