Cargando…
Deconvolution and phylogeny inference of structural variations in tumor genomic samples
MOTIVATION: Phylogenetic reconstruction of tumor evolution has emerged as a crucial tool for making sense of the complexity of emerging cancer genomic datasets. Despite the growing use of phylogenetics in cancer studies, though, the field has only slowly adapted to many ways that tumor evolution dif...
Autores principales: | Eaton, Jesse, Wang, Jingyi, Schwartz, Russell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022719/ https://www.ncbi.nlm.nih.gov/pubmed/29950001 http://dx.doi.org/10.1093/bioinformatics/bty270 |
Ejemplares similares
-
Inference of species phylogenies from bi-allelic markers using pseudo-likelihood
por: Zhu, Jiafan, et al.
Publicado: (2018) -
A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity
por: Petralia, Francesca, et al.
Publicado: (2018) -
DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy
por: Li, Yu, et al.
Publicado: (2018) -
Protein threading using residue co-variation and deep learning
por: Zhu, Jianwei, et al.
Publicado: (2018) -
Personalized regression enables sample-specific pan-cancer analysis
por: Lengerich, Benjamin J, et al.
Publicado: (2018)