Cargando…

Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses

The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy vo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakker, Olivier B., Aguirre-Gamboa, Raul, Sanna, Serena, Oosting, Marije, Smeekens, Sanne P., Jaeger, Martin, Zorro, Maria, Võsa, Urmo, Withoff, Sebo, Netea-Maier, Romana T., Koenen, Hans J.P.M., Joosten, Irma, Xavier, Ramnik J., Franke, Lude, Joosten, Leo A.B., Kumar, Vinod, Wijmenga, Cisca, Netea, Mihai G., Li, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022810/
https://www.ncbi.nlm.nih.gov/pubmed/29784908
http://dx.doi.org/10.1038/s41590-018-0121-3
_version_ 1783335747211755520
author Bakker, Olivier B.
Aguirre-Gamboa, Raul
Sanna, Serena
Oosting, Marije
Smeekens, Sanne P.
Jaeger, Martin
Zorro, Maria
Võsa, Urmo
Withoff, Sebo
Netea-Maier, Romana T.
Koenen, Hans J.P.M.
Joosten, Irma
Xavier, Ramnik J.
Franke, Lude
Joosten, Leo A.B.
Kumar, Vinod
Wijmenga, Cisca
Netea, Mihai G.
Li, Yang
author_facet Bakker, Olivier B.
Aguirre-Gamboa, Raul
Sanna, Serena
Oosting, Marije
Smeekens, Sanne P.
Jaeger, Martin
Zorro, Maria
Võsa, Urmo
Withoff, Sebo
Netea-Maier, Romana T.
Koenen, Hans J.P.M.
Joosten, Irma
Xavier, Ramnik J.
Franke, Lude
Joosten, Leo A.B.
Kumar, Vinod
Wijmenga, Cisca
Netea, Mihai G.
Li, Yang
author_sort Bakker, Olivier B.
collection PubMed
description The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine-production capacity after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine–stimulus pairs, 11 categories of host factors together explained up to 67% of inter-individual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine-production (correlation 0.28-0.89), while non-genetic factors influenced cytokine production as well.
format Online
Article
Text
id pubmed-6022810
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-60228102018-11-21 Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses Bakker, Olivier B. Aguirre-Gamboa, Raul Sanna, Serena Oosting, Marije Smeekens, Sanne P. Jaeger, Martin Zorro, Maria Võsa, Urmo Withoff, Sebo Netea-Maier, Romana T. Koenen, Hans J.P.M. Joosten, Irma Xavier, Ramnik J. Franke, Lude Joosten, Leo A.B. Kumar, Vinod Wijmenga, Cisca Netea, Mihai G. Li, Yang Nat Immunol Article The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine-production capacity after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine–stimulus pairs, 11 categories of host factors together explained up to 67% of inter-individual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine-production (correlation 0.28-0.89), while non-genetic factors influenced cytokine production as well. 2018-05-21 2018-07 /pmc/articles/PMC6022810/ /pubmed/29784908 http://dx.doi.org/10.1038/s41590-018-0121-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Bakker, Olivier B.
Aguirre-Gamboa, Raul
Sanna, Serena
Oosting, Marije
Smeekens, Sanne P.
Jaeger, Martin
Zorro, Maria
Võsa, Urmo
Withoff, Sebo
Netea-Maier, Romana T.
Koenen, Hans J.P.M.
Joosten, Irma
Xavier, Ramnik J.
Franke, Lude
Joosten, Leo A.B.
Kumar, Vinod
Wijmenga, Cisca
Netea, Mihai G.
Li, Yang
Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title_full Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title_fullStr Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title_full_unstemmed Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title_short Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
title_sort integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022810/
https://www.ncbi.nlm.nih.gov/pubmed/29784908
http://dx.doi.org/10.1038/s41590-018-0121-3
work_keys_str_mv AT bakkerolivierb integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT aguirregamboaraul integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT sannaserena integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT oostingmarije integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT smeekenssannep integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT jaegermartin integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT zorromaria integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT vosaurmo integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT withoffsebo integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT neteamaierromanat integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT koenenhansjpm integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT joostenirma integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT xavierramnikj integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT frankelude integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT joostenleoab integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT kumarvinod integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT wijmengacisca integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT neteamihaig integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses
AT liyang integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses