Cargando…
Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy vo...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022810/ https://www.ncbi.nlm.nih.gov/pubmed/29784908 http://dx.doi.org/10.1038/s41590-018-0121-3 |
_version_ | 1783335747211755520 |
---|---|
author | Bakker, Olivier B. Aguirre-Gamboa, Raul Sanna, Serena Oosting, Marije Smeekens, Sanne P. Jaeger, Martin Zorro, Maria Võsa, Urmo Withoff, Sebo Netea-Maier, Romana T. Koenen, Hans J.P.M. Joosten, Irma Xavier, Ramnik J. Franke, Lude Joosten, Leo A.B. Kumar, Vinod Wijmenga, Cisca Netea, Mihai G. Li, Yang |
author_facet | Bakker, Olivier B. Aguirre-Gamboa, Raul Sanna, Serena Oosting, Marije Smeekens, Sanne P. Jaeger, Martin Zorro, Maria Võsa, Urmo Withoff, Sebo Netea-Maier, Romana T. Koenen, Hans J.P.M. Joosten, Irma Xavier, Ramnik J. Franke, Lude Joosten, Leo A.B. Kumar, Vinod Wijmenga, Cisca Netea, Mihai G. Li, Yang |
author_sort | Bakker, Olivier B. |
collection | PubMed |
description | The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine-production capacity after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine–stimulus pairs, 11 categories of host factors together explained up to 67% of inter-individual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine-production (correlation 0.28-0.89), while non-genetic factors influenced cytokine production as well. |
format | Online Article Text |
id | pubmed-6022810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-60228102018-11-21 Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses Bakker, Olivier B. Aguirre-Gamboa, Raul Sanna, Serena Oosting, Marije Smeekens, Sanne P. Jaeger, Martin Zorro, Maria Võsa, Urmo Withoff, Sebo Netea-Maier, Romana T. Koenen, Hans J.P.M. Joosten, Irma Xavier, Ramnik J. Franke, Lude Joosten, Leo A.B. Kumar, Vinod Wijmenga, Cisca Netea, Mihai G. Li, Yang Nat Immunol Article The immune response to pathogens varies substantially among people. While both genetic and non-genetic factors contribute to inter-person variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine-production capacity after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine–stimulus pairs, 11 categories of host factors together explained up to 67% of inter-individual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine-production (correlation 0.28-0.89), while non-genetic factors influenced cytokine production as well. 2018-05-21 2018-07 /pmc/articles/PMC6022810/ /pubmed/29784908 http://dx.doi.org/10.1038/s41590-018-0121-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Bakker, Olivier B. Aguirre-Gamboa, Raul Sanna, Serena Oosting, Marije Smeekens, Sanne P. Jaeger, Martin Zorro, Maria Võsa, Urmo Withoff, Sebo Netea-Maier, Romana T. Koenen, Hans J.P.M. Joosten, Irma Xavier, Ramnik J. Franke, Lude Joosten, Leo A.B. Kumar, Vinod Wijmenga, Cisca Netea, Mihai G. Li, Yang Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title | Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title_full | Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title_fullStr | Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title_full_unstemmed | Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title_short | Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
title_sort | integration of multi-omics data and deep phenotyping enables prediction of cytokine responses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022810/ https://www.ncbi.nlm.nih.gov/pubmed/29784908 http://dx.doi.org/10.1038/s41590-018-0121-3 |
work_keys_str_mv | AT bakkerolivierb integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT aguirregamboaraul integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT sannaserena integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT oostingmarije integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT smeekenssannep integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT jaegermartin integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT zorromaria integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT vosaurmo integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT withoffsebo integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT neteamaierromanat integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT koenenhansjpm integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT joostenirma integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT xavierramnikj integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT frankelude integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT joostenleoab integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT kumarvinod integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT wijmengacisca integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT neteamihaig integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses AT liyang integrationofmultiomicsdataanddeepphenotypingenablespredictionofcytokineresponses |