Cargando…
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network
Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibili...
Autores principales: | Zhang, Buzhong, Li, Linqing, Lü, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023031/ https://www.ncbi.nlm.nih.gov/pubmed/29799510 http://dx.doi.org/10.3390/biom8020033 |
Ejemplares similares
-
Prediction of 8-state protein secondary structures by a novel deep learning architecture
por: Zhang, Buzhong, et al.
Publicado: (2018) -
A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
por: Deng, Lei, et al.
Publicado: (2017) -
Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction
por: Rabby, Md Fazle, et al.
Publicado: (2021) -
Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network
por: David, Rakesh, et al.
Publicado: (2021) -
Research on RNA secondary structure predicting via bidirectional recurrent neural network
por: Lu, Weizhong, et al.
Publicado: (2021)