Cargando…

Aneuploid CTC and CEC

Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (> white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural prote...

Descripción completa

Detalles Bibliográficos
Autor principal: Lin, Peter Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023477/
https://www.ncbi.nlm.nih.gov/pubmed/29670052
http://dx.doi.org/10.3390/diagnostics8020026
_version_ 1783335878128566272
author Lin, Peter Ping
author_facet Lin, Peter Ping
author_sort Lin, Peter Ping
collection PubMed
description Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (> white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the ALK gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the TP53 gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.
format Online
Article
Text
id pubmed-6023477
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60234772018-07-13 Aneuploid CTC and CEC Lin, Peter Ping Diagnostics (Basel) Review Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (> white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the ALK gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the TP53 gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis. MDPI 2018-04-18 /pmc/articles/PMC6023477/ /pubmed/29670052 http://dx.doi.org/10.3390/diagnostics8020026 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Lin, Peter Ping
Aneuploid CTC and CEC
title Aneuploid CTC and CEC
title_full Aneuploid CTC and CEC
title_fullStr Aneuploid CTC and CEC
title_full_unstemmed Aneuploid CTC and CEC
title_short Aneuploid CTC and CEC
title_sort aneuploid ctc and cec
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023477/
https://www.ncbi.nlm.nih.gov/pubmed/29670052
http://dx.doi.org/10.3390/diagnostics8020026
work_keys_str_mv AT linpeterping aneuploidctcandcec