Cargando…

Computational Convolution of SELDI Data for the Diagnosis of Alzheimer’s Disease

Alzheimer’s disease is rapidly becoming an endemic for people over the age of 65. A vital path towards reversing this ominous trend is the building of reliable diagnostic devices for definite and early diagnoses in lieu of the longitudinal, usually inconclusive and non-generalize-able methods curren...

Descripción completa

Detalles Bibliográficos
Autores principales: Anyaiwe, Destiny E. O., Singh, Gautam B., Wilson, George D., Geddes, Timothy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023511/
https://www.ncbi.nlm.nih.gov/pubmed/29772817
http://dx.doi.org/10.3390/ht7020014
Descripción
Sumario:Alzheimer’s disease is rapidly becoming an endemic for people over the age of 65. A vital path towards reversing this ominous trend is the building of reliable diagnostic devices for definite and early diagnoses in lieu of the longitudinal, usually inconclusive and non-generalize-able methods currently in use. In this article, we present a survey of methods for mining pools of mass spectrometer saliva data in relation to diagnosing Alzheimer’s disease. The computational methods provides new approaches for appropriately gleaning latent information from mass spectra data. They improve traditional machine learning algorithms and are most fit for handling matrix data points including solving problems beyond protein identifications and biomarker discovery.