Cargando…
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods
PURPOSE: This study aimed to improve estimates of sitting time from hip-worn accelerometers used in large cohort studies by using machine learning methods developed on free-living activPAL data. METHODS: Thirty breast cancer survivors concurrently wore a hip-worn accelerometer and a thigh-worn activ...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023581/ https://www.ncbi.nlm.nih.gov/pubmed/29443824 http://dx.doi.org/10.1249/MSS.0000000000001578 |
Sumario: | PURPOSE: This study aimed to improve estimates of sitting time from hip-worn accelerometers used in large cohort studies by using machine learning methods developed on free-living activPAL data. METHODS: Thirty breast cancer survivors concurrently wore a hip-worn accelerometer and a thigh-worn activPAL for 7 d. A random forest classifier, trained on the activPAL data, was used to detect sitting, standing, and sit–stand transitions in 5-s windows in the hip-worn accelerometer. The classifier estimates were compared with the standard accelerometer cut point, and significant differences across different bout lengths were investigated using mixed-effect models. RESULTS: Overall, the algorithm predicted the postures with moderate accuracy (stepping, 77%; standing, 63%; sitting, 67%; sit-to-stand, 52%; and stand-to-sit, 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 min or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. CONCLUSIONS: This is among the first algorithms for sitting and standing for hip-worn accelerometer data to be trained from entirely free-living activPAL data. The new algorithm detected prolonged sitting, which has been shown to be the most detrimental to health. Further validation and training in larger cohorts is warranted. |
---|