Cargando…
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods
PURPOSE: This study aimed to improve estimates of sitting time from hip-worn accelerometers used in large cohort studies by using machine learning methods developed on free-living activPAL data. METHODS: Thirty breast cancer survivors concurrently wore a hip-worn accelerometer and a thigh-worn activ...
Autores principales: | KERR, JACQUELINE, CARLSON, JORDAN, GODBOLE, SUNEETA, CADMUS-BERTRAM, LISA, BELLETTIERE, JOHN, HARTMAN, SHERI |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023581/ https://www.ncbi.nlm.nih.gov/pubmed/29443824 http://dx.doi.org/10.1249/MSS.0000000000001578 |
Ejemplares similares
-
The CNN Hip Accelerometer Posture (CHAP) Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation Study
por: GREENWOOD-HICKMAN, MIKAEL ANNE, et al.
Publicado: (2021) -
CHAP-child: an open source method for estimating sit-to-stand transitions and sedentary bout patterns from hip accelerometers among children
por: Carlson, Jordan A., et al.
Publicado: (2022) -
An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data
por: Procter, Duncan S., et al.
Publicado: (2018) -
Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)
por: Crowley, Patrick, et al.
Publicado: (2019) -
Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms
por: Ellis, Katherine, et al.
Publicado: (2014)