Cargando…

Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery

Clinical translation of small interfering RNA (siRNA) nanocarriers is hindered by limited knowledge regarding the parameters that regulate interactions between nanocarriers and biological systems. To address this, we investigated the influence of polycation-based nanocarrier architecture on intracel...

Descripción completa

Detalles Bibliográficos
Autores principales: Melamed, Jilian R., Kreuzberger, Nicole L., Goyal, Ritu, Day, Emily S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023847/
https://www.ncbi.nlm.nih.gov/pubmed/30195760
http://dx.doi.org/10.1016/j.omtn.2018.05.008
Descripción
Sumario:Clinical translation of small interfering RNA (siRNA) nanocarriers is hindered by limited knowledge regarding the parameters that regulate interactions between nanocarriers and biological systems. To address this, we investigated the influence of polycation-based nanocarrier architecture on intracellular siRNA delivery. We compared the cellular interactions of two polycation-based siRNA carriers that have similar size and surface charge but different siRNA orientation: (1) polyethylenimine-coated spherical nucleic acids (PEI-SNAs), in which polyethylenimine is wrapped around a spherical nucleic acid core containing radially oriented siRNA and (2) randomly assembled polyethylenimine-siRNA polyplexes that lack controlled architecture. We found that PEI-SNAs undergo enhanced and more rapid cellular uptake than polyplexes, suggesting a prominent role for architecture in cellular uptake. Confocal microscopy studies demonstrated that while PEI-SNAs and polyplexes exhibit similar intracellular stability, PEI-SNAs undergo decreased accumulation within lysosomes, identifying another advantage conferred by their architecture. Indeed, these advantageous cellular interactions enhanced the gene silencing potency of PEI-SNAs by 10-fold relative to polyplexes. Finally, cytocompatibility studies showed that PEI-SNAs exhibit decreased toxicity per PEI content relative to polyplexes, allowing the use of more polycation. Our studies provide critical insight into design considerations for engineering siRNA carriers and warrant future investigation of how nanocarrier architecture influences cellular-, organ-, and organism-level interactions.