Cargando…
Neuromorphic computing with multi-memristive synapses
Neuromorphic computing has emerged as a promising avenue towards building the next generation of intelligent computing systems. It has been proposed that memristive devices, which exhibit history-dependent conductivity modulation, could efficiently represent the synaptic weights in artificial neural...
Autores principales: | Boybat, Irem, Le Gallo, Manuel, Nandakumar, S. R., Moraitis, Timoleon, Parnell, Thomas, Tuma, Tomas, Rajendran, Bipin, Leblebici, Yusuf, Sebastian, Abu, Eleftheriou, Evangelos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023896/ https://www.ncbi.nlm.nih.gov/pubmed/29955057 http://dx.doi.org/10.1038/s41467-018-04933-y |
Ejemplares similares
-
Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
por: Nandakumar, S. R., et al.
Publicado: (2020) -
Memristive Artificial Synapses for Neuromorphic Computing
por: Huang, Wen, et al.
Publicado: (2021) -
Accurate deep neural network inference using computational phase-change memory
por: Joshi, Vinay, et al.
Publicado: (2020) -
Graphene memristive synapses for high precision neuromorphic computing
por: Schranghamer, Thomas F., et al.
Publicado: (2020) -
Chalcogenide optomemristors for multi-factor neuromorphic computation
por: Sarwat, Syed Ghazi, et al.
Publicado: (2022)