Cargando…

Geodetic evidence for interconnectivity between Aira and Kirishima magmatic systems, Japan

It is not known whether clustered or aligned volcanic edifices at the Earth surface have connected magmatic systems at depth. Previously suggested by geological records of paired eruptions, volcano interconnectivity still lacks proper geodetic evidence. Here we use GPS time-series and deformation mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Brothelande, E., Amelung, F., Yunjun, Z., Wdowinski, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023929/
https://www.ncbi.nlm.nih.gov/pubmed/29955079
http://dx.doi.org/10.1038/s41598-018-28026-4
Descripción
Sumario:It is not known whether clustered or aligned volcanic edifices at the Earth surface have connected magmatic systems at depth. Previously suggested by geological records of paired eruptions, volcano interconnectivity still lacks proper geodetic evidence. Here we use GPS time-series and deformation modeling to show how Aira caldera and Kirishima, two adjacent volcanic centers in Kagoshima graben (southern Japan), interacted during Kirishima unrest in 2011. Whereas Aira caldera had been inflating steadily for two decades, it deflated during the eruption of Kirishima which started with a large-volume lava extrusion. This deflation, which cannot be explained by stress changes, is interpreted as the result of magma withdrawal from the Aira system during the Kirishima replenishment phase. This study highlights the behavior of connected neighboring volcanic systems before and after a large eruption, and the importance of taking into account volcano interactions in eruption probability models.