Cargando…
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms
The rapid development of light detection and ranging (Lidar) provides a promising way to obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate 3D laser points. Recently, Lidar has been widely used to obtain phenotype data in the greenhouse and field with along ot...
Autores principales: | Jin, Shichao, Su, Yanjun, Gao, Shang, Wu, Fangfang, Hu, Tianyu, Liu, Jin, Li, Wenkai, Wang, Dingchang, Chen, Shaojiang, Jiang, Yuanxi, Pang, Shuxin, Guo, Qinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024748/ https://www.ncbi.nlm.nih.gov/pubmed/29988466 http://dx.doi.org/10.3389/fpls.2018.00866 |
Ejemplares similares
-
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar
por: Su, Yanjun, et al.
Publicado: (2019) -
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level
por: Jin, Shichao, et al.
Publicado: (2020) -
Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series
por: Jin, Shichao, et al.
Publicado: (2021) -
Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network
por: Liu, Tianrui, et al.
Publicado: (2018) -
Detection of Micro-Defects on Irregular Reflective Surfaces Based on Improved Faster R-CNN
por: Zhou, Zhuangzhuang, et al.
Publicado: (2019)