Cargando…

Preparation and Performance Analysis of Modified Sodium Acetate Trihydrate

In order to solve undercooling and phase separation of sodium acetate trihydrate (SAT), experimental screening method was used to select nucleating agents and thickeners that are suitable for SAT, and the optimal ratio was identified. Through screening experiments of nucleating agents, it is found t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hua, Weisan, Zhang, Xuelai, Muthoka, Munyalo Jotham, Han, Xingchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024958/
https://www.ncbi.nlm.nih.gov/pubmed/29914045
http://dx.doi.org/10.3390/ma11061016
Descripción
Sumario:In order to solve undercooling and phase separation of sodium acetate trihydrate (SAT), experimental screening method was used to select nucleating agents and thickeners that are suitable for SAT, and the optimal ratio was identified. Through screening experiments of nucleating agents, it is found that disodium hydrogen phosphate can be used as an effective nucleating agent for SAT. When the weight content of disodium hydrogen phosphate in SAT is 2%, the degree of undercooling was reduced to approximately 2 K. The addition of 1–1.5% (weight) of xanthan gum (XG) to SAT can effectively inhibit the phase separation. Since the properties of SAT changes after the modification, the corresponding comparison analysis was performed. The results showed that XG has a significant influence on the SAT performance of SAT. With the addition of 1.5 wt % of XG in pure SAT, the latent heat of fusion and solid/liquid volume expansion reduce by 5.2% and 5.4% respectively, and the thermal conductivity and solid/liquid density also decreases accordingly.