Cargando…

Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities

In this work, we have followed ethanol evaporation at two different concentrations using a fiber optic spectrometer and a screen capture application with a resolving capacity of 10 ms. The transmission spectra are measured in the visible-near-infrared range with a resolution of 0.5 nm. Porous Silico...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez Vivanco, María del Rayo, García, Godofredo, Doti, Rafael, Faubert, Jocelyn, Lugo Arce, Jesus Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025103/
https://www.ncbi.nlm.nih.gov/pubmed/29861442
http://dx.doi.org/10.3390/ma11060894
_version_ 1783336207237775360
author Jiménez Vivanco, María del Rayo
García, Godofredo
Doti, Rafael
Faubert, Jocelyn
Lugo Arce, Jesus Eduardo
author_facet Jiménez Vivanco, María del Rayo
García, Godofredo
Doti, Rafael
Faubert, Jocelyn
Lugo Arce, Jesus Eduardo
author_sort Jiménez Vivanco, María del Rayo
collection PubMed
description In this work, we have followed ethanol evaporation at two different concentrations using a fiber optic spectrometer and a screen capture application with a resolving capacity of 10 ms. The transmission spectra are measured in the visible-near-infrared range with a resolution of 0.5 nm. Porous Silicon microcavities were fabricated by electrochemistry etching of crystalline silicon. The microcavities were designed to have a localized mode at 472 nm (blue band). Ethanol infiltration produces a redshift of approximately 17 nm. After a few minutes, a phase change from liquid to vapor occurs and the localized wavelength shifts back to the blue band. This process happens in a time window of only 60 ms. Our results indicate a difference between two distinct ethanol concentrations (70% and 35%). For the lower ethanol concentration, the blue shift rate process is slower in the first 30 ms and then it equals the high ethanol concentration blue shift rate. We have repeated the same process, but in an extended mode (750 nm), and have obtained similar results. Our results show that these photonic structures and with the spectroscopic technique used here can be implemented as a sensor with sufficient sensitivity and selectivity. Finally, since the photonic structure is a membrane, it can also be used as a transducer. For instance, by placing this photonic structure on top of a fast photodetector whose photo-response lies within the same bandwidth, the optical response can be transferred to an electrical signal.
format Online
Article
Text
id pubmed-6025103
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60251032018-07-09 Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities Jiménez Vivanco, María del Rayo García, Godofredo Doti, Rafael Faubert, Jocelyn Lugo Arce, Jesus Eduardo Materials (Basel) Article In this work, we have followed ethanol evaporation at two different concentrations using a fiber optic spectrometer and a screen capture application with a resolving capacity of 10 ms. The transmission spectra are measured in the visible-near-infrared range with a resolution of 0.5 nm. Porous Silicon microcavities were fabricated by electrochemistry etching of crystalline silicon. The microcavities were designed to have a localized mode at 472 nm (blue band). Ethanol infiltration produces a redshift of approximately 17 nm. After a few minutes, a phase change from liquid to vapor occurs and the localized wavelength shifts back to the blue band. This process happens in a time window of only 60 ms. Our results indicate a difference between two distinct ethanol concentrations (70% and 35%). For the lower ethanol concentration, the blue shift rate process is slower in the first 30 ms and then it equals the high ethanol concentration blue shift rate. We have repeated the same process, but in an extended mode (750 nm), and have obtained similar results. Our results show that these photonic structures and with the spectroscopic technique used here can be implemented as a sensor with sufficient sensitivity and selectivity. Finally, since the photonic structure is a membrane, it can also be used as a transducer. For instance, by placing this photonic structure on top of a fast photodetector whose photo-response lies within the same bandwidth, the optical response can be transferred to an electrical signal. MDPI 2018-05-26 /pmc/articles/PMC6025103/ /pubmed/29861442 http://dx.doi.org/10.3390/ma11060894 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jiménez Vivanco, María del Rayo
García, Godofredo
Doti, Rafael
Faubert, Jocelyn
Lugo Arce, Jesus Eduardo
Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title_full Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title_fullStr Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title_full_unstemmed Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title_short Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities
title_sort time-resolved spectroscopy of ethanol evaporation on free-standing porous silicon photonic microcavities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025103/
https://www.ncbi.nlm.nih.gov/pubmed/29861442
http://dx.doi.org/10.3390/ma11060894
work_keys_str_mv AT jimenezvivancomariadelrayo timeresolvedspectroscopyofethanolevaporationonfreestandingporoussiliconphotonicmicrocavities
AT garciagodofredo timeresolvedspectroscopyofethanolevaporationonfreestandingporoussiliconphotonicmicrocavities
AT dotirafael timeresolvedspectroscopyofethanolevaporationonfreestandingporoussiliconphotonicmicrocavities
AT faubertjocelyn timeresolvedspectroscopyofethanolevaporationonfreestandingporoussiliconphotonicmicrocavities
AT lugoarcejesuseduardo timeresolvedspectroscopyofethanolevaporationonfreestandingporoussiliconphotonicmicrocavities