Cargando…

Associations between the Objectively Measured Office Environment and Workplace Step Count and Sitting Time: Cross-Sectional Analyses from the Active Buildings Study

Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal env...

Descripción completa

Detalles Bibliográficos
Autores principales: Fisher, Abi, Ucci, Marcella, Smith, Lee, Sawyer, Alexia, Spinney, Richard, Konstantatou, Marina, Marmot, Alexi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025117/
https://www.ncbi.nlm.nih.gov/pubmed/29857575
http://dx.doi.org/10.3390/ijerph15061135
Descripción
Sumario:Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal environment on movement, and the majority of data use self-report. This study investigated associations between objectively-measured sitting time and activity levels and the spatial layout of office floors in a sample of UK office-based workers. Participants wore activPAL accelerometers for at least three consecutive workdays. Primary outcomes were steps and proportion of sitting time per working hour. Primary exposures were office spatial layout, which was objectively-measured by deriving key spatial variables: ‘distance from each workstation to key office destinations’, ‘distance from participant’s workstation to all other workstations’, ‘visibility of co-workers’, and workstation ‘closeness’. 131 participants from 10 organisations were included. Fifty-four per cent were female, 81% were white, and the majority had a managerial or professional role (72%) in their organisation. The average proportion of the working hour spent sitting was 0.7 (SD 0.15); participants took on average 444 (SD 210) steps per working hour. Models adjusted for confounders revealed significant negative associations between step count and distance from each workstation to all other office destinations (e.g., B = −4.66, 95% CI: −8.12, −1.12, p < 0.01) and nearest office destinations (e.g., B = −6.45, 95% CI: −11.88, −0.41, p < 0.05) and visibility of workstations when standing (B = −2.35, 95% CI: −3.53, −1.18, p < 0.001). The magnitude of these associations was small. There were no associations between spatial variables and sitting time per work hour. Contrary to our hypothesis, the further participants were from office destinations the less they walked, suggesting that changing the relative distance between workstations and other destinations on the same floor may not be the most fruitful target for promoting walking and reducing sitting in the workplace. However, reported effect sizes were very small and based on cross-sectional analyses. The approaches developed in this study could be applied to other office buildings to establish whether a specific office typology may yield more promising results.