Cargando…
MetaMap: an atlas of metatranscriptomic reads in human disease-related RNA-seq data
BACKGROUND: With the advent of the age of big data in bioinformatics, large volumes of data and high-performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology...
Autores principales: | Simon, L M, Karg, S, Westermann, A J, Engel, M, Elbehery, A H A, Hense, B, Heinig, M, Deng, L, Theis, F J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025204/ https://www.ncbi.nlm.nih.gov/pubmed/29901703 http://dx.doi.org/10.1093/gigascience/giy070 |
Ejemplares similares
-
Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
por: Dilthey, Alexander T., et al.
Publicado: (2019) -
A Systematic Approach to Configuring MetaMap for Optimal Performance
por: Jing, Xia, et al.
Publicado: (2022) -
Comparison of MetaMap and cTAKES for entity extraction in clinical notes
por: Reátegui, Ruth, et al.
Publicado: (2018) -
MetaMap Lite in Excel: Biomedical Named-Entity Recognition for Non-Technical Users
por: Bhupatiraju, Ravi Teja, et al.
Publicado: (2017) -
Read trimming is not required for mapping and quantification of RNA-seq reads at the gene level
por: Liao, Yang, et al.
Publicado: (2020)