Cargando…

Crystal Structure and Thermoelectric Properties of Lightly Substituted Higher Manganese Silicides

The dissipation of MnSi layered precipitates during solidification is critical for further enhancement of the thermoelectric properties of the higher manganese silicides. We have investigated the effects of partial substitution of V in Mn sites and of Ge in Si sites on the crystal structures and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyazaki, Yuzuru, Hamada, Haruki, Nagai, Hiroki, Hayashi, Kei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025248/
https://www.ncbi.nlm.nih.gov/pubmed/29848977
http://dx.doi.org/10.3390/ma11060926
Descripción
Sumario:The dissipation of MnSi layered precipitates during solidification is critical for further enhancement of the thermoelectric properties of the higher manganese silicides. We have investigated the effects of partial substitution of V in Mn sites and of Ge in Si sites on the crystal structures and thermoelectric properties of these silicides in detail. As previously reported, a small amount of V-substitution is quite effective in completely dissipating the MnSi striations; in contrast, a small proportion of these MnSi striations always remains present in the Ge-substitution case, even in the vicinity of the Ge solubility limits. For completely MnSi-dissipated samples, domain separation of the regular and highly strained arrangements of the Si atoms is realized. This domain separation suppresses the deterioration of the carrier mobility of the partially V-substituted samples and maintains even higher electrical conductivity to yield a high thermoelectric power factor of ∼2.3 mW/K [Formula: see text] m at higher temperatures.